题目:
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
For example,
Consider the following matrix:
[ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50]]
Given target = 3
, return true
.
代码:
class Solution {public: bool searchMatrix(vector>& matrix, int target) { if (matrix.size()==0) return false; const int ROW = matrix.size(); const int COL = matrix[0].size(); // search the target row int begin = 0; int end = ROW-1; while ( begin<=end ) { int mid = (begin+end)/2; int lower = matrix[mid][0]; int upper = matrix[mid][COL-1]; if ( target>=lower && target<=upper ) { return Solution::binarySearch(matrix[mid], target); } if ( target upper ) { begin = mid+1; continue; } } return false; } static bool binarySearch(vector & row, int target) { int begin = 0; int end = row.size()-1; while ( begin<=end ) { int mid = (begin+end)/2; if ( row[mid]==target ) return true; if ( row[mid]>target ) { end = mid-1; } else { begin = mid+1; } } return false; }};
tips:
1. 首先二分查找可能所在的行
2. 确定某一行之后,再二分查找所在的列
完毕。
======================================
另一种思路:把大的二维矩阵当成一个一维数组看,只需要执行一次二分查找就OK了。
class Solution {public: bool searchMatrix(vector>& matrix, int target) { if (matrix.size()==0) return false; const int ROW = matrix.size(); const int COL = matrix[0].size(); int begin = 0; int end = ROW*COL-1; while ( begin<=end ){ int mid = (begin+end)/2; int val = matrix[mid/COL][mid%COL]; if ( val==target ) return true; if ( val>target ){ end = mid-1; } else{ begin = mid+1; } } return false; }};
tips:
注意这条语句“int val = matrix[mid/COL][mid%COL]”。
一开始写成了"int val = matrix[mid/ROW][mid%COL]" 掉入了这个思维陷阱,因为每行有多少列应该是基础长度单元,所以不论是取商还是余数,分母上都应该是COL。
============================================
第二次过这道题,沿用一般的思路,先找可能在哪一行;再去行里面找。
class Solution {public: bool searchMatrix(vector>& matrix, int target) { // search for row int row = -1; int begin = 0; int end = matrix.size()-1; while ( begin<=end ) { int mid = (begin+end)/2; if ( matrix[mid][0]<=target && matrix[mid][matrix[mid].size()-1]>=target ) { row = mid; break; } else if ( matrix[mid][0]>target ) { end = mid-1; } else { begin = mid+1; } } if ( row==-1 ) return false; // search in the row begin = 0; end = matrix[row].size()-1; while ( begin<=end ) { int mid = (begin+end)/2; if ( matrix[row][mid]==target ) return true; if ( matrix[row][mid]>target ) { end = mid-1; } else { begin = mid+1; } } return false; }};